Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Adicionar filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano
1.
Res Sq ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: covidwho-2316728

RESUMO

We report the direct comparison of monomeric, dimeric and trimeric RBD protein subunit vaccines to a virus-like particle (VLP) displaying RBD. After two and three doses, a RBD dimer and trimer elicited antibody levels in mice comparable to an RBD-VLP. Furthermore, an Omicron (BA.1) RBD hetero-dimer induced neutralizing activity similar to the RBD-VLP. A RBD hetero-dimer and RBD-VLP also shows comparable breadth to other SARS-CoV-2 variants-of-concern (VOCs).

2.
Nat Biotechnol ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: covidwho-2305153

RESUMO

Decentralized manufacture of thermostable mRNA vaccines in a microneedle patch (MNP) format could enhance vaccine access in low-resource communities by eliminating the need for a cold chain and trained healthcare personnel. Here we describe an automated process for printing MNP Coronavirus Disease 2019 (COVID-19) mRNA vaccines in a standalone device. The vaccine ink is composed of lipid nanoparticles loaded with mRNA and a dissolvable polymer blend that was optimized for high bioactivity by screening formulations in vitro. We demonstrate that the resulting MNPs are shelf stable for at least 6 months at room temperature when assessed using a model mRNA construct. Vaccine loading efficiency and microneedle dissolution suggest that efficacious, microgram-scale doses of mRNA encapsulated in lipid nanoparticles could be delivered with a single patch. Immunizations in mice using manually produced MNPs with mRNA encoding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain stimulate long-term immune responses similar to those of intramuscular administration.

3.
Cell Rep Med ; 4(4): 101018, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: covidwho-2288041

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines demonstrate reduced protection against acquisition of BA.5 subvariant but are still effective against severe disease. However, immune correlates of protection against BA.5 remain unknown. We report the immunogenicity and protective efficacy of vaccine regimens consisting of the vector-based Ad26.COV2.S vaccine and the adjuvanted spike ferritin nanoparticle (SpFN) vaccine against a high-dose, mismatched Omicron BA.5 challenge in macaques. The SpFNx3 and Ad26 + SpFNx2 regimens elicit higher antibody responses than Ad26x3, whereas the Ad26 + SpFNx2 and Ad26x3 regimens induce higher CD8 T cell responses than SpFNx3. The Ad26 + SpFNx2 regimen elicits the highest CD4 T cell responses. All three regimens suppress peak and day 4 viral loads in the respiratory tract, which correlate with both humoral and cellular immune responses. This study demonstrates that both homologous and heterologous regimens involving Ad26.COV2.S and SpFN vaccines provide robust protection against a mismatched BA.5 challenge in macaques.


Assuntos
COVID-19 , Nanopartículas , Vacinas , Humanos , Animais , Macaca , Ad26COVS1 , COVID-19/prevenção & controle , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Ferritinas
4.
NPJ Vaccines ; 8(1): 23, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: covidwho-2264251

RESUMO

Despite the availability of several effective SARS-CoV-2 vaccines, additional vaccines will be required for optimal global vaccination. In this study, we investigate the immunogenicity and protective efficacy of the GBP510 protein subunit vaccine adjuvanted with AS03, which has recently been authorized for marketing in South Korea under the trade name SKYCovioneTM. The antigen in GBP510/AS03 is a two-part recombinant nanoparticle, which displays 60 receptor binding domain (RBD) proteins of SARS-CoV-2 Spike on its surface. In this study we show that GBP510/AS03 induced robust immune responses in rhesus macaques and protected against a high-dose SARS-CoV-2 Delta challenge. We vaccinated macaques with two or three doses of GBP510/AS03 matched to the ancestral Wuhan strain of SARS-CoV-2 or with two doses of GBP510/AS03 matched to the ancestral strain and one dose matched to the Beta strain. Following the challenge with Delta, the vaccinated macaques rapidly controlled the virus in bronchoalveolar lavage and nasal swabs. Binding and neutralizing antibody responses prior to challenge correlated with protection against viral replication postchallenge. These data are consistent with data with this vaccine from the phase 3 clinical trial.

5.
Sci Adv ; 8(47): eade4433, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: covidwho-2137357

RESUMO

Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and waning immunity call for next-generation vaccine strategies. Here, we assessed the immunogenicity and protective efficacy of two SARS-CoV-2 vaccines targeting the WA1/2020 spike protein, Ad26.COV2.S (Ad26) and Spike ferritin Nanoparticle (SpFN), in nonhuman primates, delivered as either a homologous (SpFN/SpFN and Ad26/Ad26) or heterologous (Ad26/SpFN) prime-boost regimen. The Ad26/SpFN regimen elicited the highest CD4 T cell and memory B cell responses, the SpFN/SpFN regimen generated the highest binding and neutralizing antibody responses, and the Ad26/Ad26 regimen generated the most robust CD8 T cell responses. Despite these differences, protective efficacy against SARS-CoV-2 Omicron BA.1 challenge was similar for all three regimens. After challenge, all vaccinated monkeys showed significantly reduced peak and day 4 viral loads in both bronchoalveolar lavage and nasal swabs as compared with sham animals. The efficacy conferred by these three immunologically distinct vaccine regimens suggests that both humoral and cellular immunity contribute to protection against SARS-CoV-2 Omicron challenge.

6.
Sci Immunol ; 7(77): eabq7647, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: covidwho-1986327

RESUMO

Spike-specific neutralizing antibodies (NAbs) are generally considered key correlates of vaccine protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Recently, robust vaccine prevention of severe disease with SARS-CoV-2 variants that largely escape NAb responses has been reported, suggesting a role for other immune parameters for virologic control. However, direct data demonstrating a role of CD8+ T cells in vaccine protection have not yet been reported. In this study, we show that vaccine-elicited CD8+ T cells contribute substantially to virologic control after SARS-CoV-2 challenge in rhesus macaques. We vaccinated 30 macaques with a single immunization of the adenovirus vector-based vaccine Ad26.COV2.S or sham and then challenged them with 5 × 105 median tissue culture infectious dose SARS-CoV-2 B.1.617.2 (Delta) by the intranasal and intratracheal routes. All vaccinated animals were infected by this high-dose challenge but showed rapid virologic control in nasal swabs and bronchoalveolar lavage by day 4 after challenge. However, administration of an anti-CD8α- or anti-CD8ß-depleting monoclonal antibody in vaccinated animals before SARS-CoV-2 challenge resulted in higher levels of peak and day 4 virus in both the upper and lower respiratory tracts. These data demonstrate that CD8+ T cells contribute substantially to vaccine protection against SARS-CoV-2 replication in macaques.


Assuntos
COVID-19 , Vacinas Virais , Animais , Humanos , SARS-CoV-2 , Linfócitos T CD8-Positivos , Macaca mulatta , Ad26COVS1 , COVID-19/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA